English translation for "finsler manifold"
|
- 芬斯莱廖
芬斯勒几何 芬斯勒流形
Related Translations:
air manifold: 风管集合管空气歧管压缩空气系统分路阀箱空气支管空气岐管气包压气总管压缩空气系统分路阀箱, 空气歧管
- Example Sentences:
| 1. | Let ( m , f ) be an n - dimensional compact finsler manifold without boudary . if for some positive constant k , then moreover , the diameter of m is when 1 = mk 设m是紧致无边的m维几二le :流形,如果存在常数k ,使得b凡引x )全( 。 | | 2. | When target manifold is r , . if u is a function of finsler manifold , we can define laplace operator , it is well - defined . if u is called the eigenvalue of the laplacian a and u is called the corresponding eigenfunction 众所周知,对于黎曼几何,调和映射是调和函数的推广,且当目标流形为r时,二(哟二撇el ] .因此对于尸‘ nsler流形m上的函数。可以定义laptace算子为。 | | 3. | The second part consist of chapter four . in chapter one , we study the energy density of harmonic map from finsler manifold and generalize classical result in [ se ] . in chapter two , we obtain lower estimates for the first eigenvalue of the laplace operator on a compact finsler manifold , and it generalize lichnerowicz - obata theorem [ li ] [ ob ] . in chapter three , we derive the first and second variation formula for harmonic maps between finsler manifolds . as an application , some nonexistence theorems of nonconstant stable harmonic maps from a finsler manifold to a riemannian manifold are given 第一章讨论finsler流形到黎曼流形调和映射的能量密度的间隙性,推广了[ se ]中的结果。第二章对紧致finsler流形上laplace算子的第一特征值的下界作了估计,推广了黎曼流形上的lichnerowicz - obata定理[ li ] [ ob ] 。 | | 4. | Harmonic maps between riemannian manifolds are very important in both differential geometry and mathematical physics . riemannian manifold and finsler manifold are metric measure space , so we can study harmonic map between finsler manifolds by the theory of harmonic map on general metric measure space , it will be hard to study harmonic map between finsler manifolds by tensor analysis and it will be no distinctions between the theory of harmonic map on finsler manifold and that of metric measure space . harmonic map between riemannian manifold also can be viewed as the harmonic map between tangent bundles of source manifold and target manifold 黎曼流形间的调和映射是微分几何和数学物理的重要内容。黎曼流形和finsler流形都是度量空间,自然可利用一般度量空间调和映射的理论讨论finsler流形间的调和映射。但由于控制finsler流形性质的各种张量一般情况下很难应用到一般度量空间调和映射的理论中,使得这样的讨论大都是形式上的,并与一般度量空间调和映射的理论区别不大。 | | 5. | One of open problems is to study harmonic maps between finsler manifolds and derive the first and second variation formula for harmonic maps between finsler manifolds . firstly , we define harmonic map between finsler manifold . in fact , it is the harmonic map from projective sphere bundle of source manifold to the projective sphere bundle of target manifold 算子的第一非零特征值凡全mk .特别地,当‘ ,二二k时, m的直径为六?当m是黎曼流形时,由moer “定理的推论直接可知m与半径为去的球等距 |
- Similar Words:
- "finsjo" English translation, "finska" English translation, "finskas" English translation, "finsl product" English translation, "finsler geometry" English translation, "finsler structure on a manifold" English translation, "finsoft" English translation, "finspang" English translation, "finspiegel" English translation, "finspng" English translation
|
|
|